The User Manual

Introduction

We strongly wish our product will help you. The main requirements from our clients are
detecting the fire and transmitting the images/videos to the ground station wirelessly. Moreover,
these two parts should be real-time.
We are pleased that you have chosen Wildfire Drone for your business needs. There is a strong
need for the fire detection algorithm and wireless communication model, as evidenced by the fire
detection and images/videos transmission. We provide for you here a powerful system for fire
identification model via deep learning algorithm and the QPSK wireless communication system
has been custom-designed to meet your needs. Some of the key highlights include:
e 93% fire identification accuracy for real-time image analysis
e Fire identification model has a powerful ability to keep the accuracy even there is a
strong noise
e Fire segmentation algorithm could circle the fire correctly based on the thermal images
even the environment temperature is close to the fire
e The wireless communication system we designed is not just a simple transmitter &
receiver, it also assembled with the error correction and the noise reduction parts. After
multiple tests and modifications, finally it can transmit our images data in an accurate

mode.

The purpose of this user manual is to help you, the client, successfully use and
maintain the Wildfire Drone product in your actual business context going
forward. Our aim is to make sure that you are able to benefit from our
product for many years to come!

Based on the statistics result from the National Interagency Fire Center (NIFC), wildfires exhaust
10 million acres of land in 2016 and brought $6 billion irrecoverable damages from 1995 to 2014
in the United States. Wildfires not only impact the wildlife, but more importantly endanger
human lives. Therefore, early detection of wildfires before they get out of control is an urgent
requirement. Wildfires are often initiated in remote forest areas where the common fire detection
methods such as lookout tower stations fail to detect such fires in a timely manner. Moreover,
conventional detection approaches can barely provide sufficient fire information about the
precise fire locations, the orientation of fire expansion, etc. To detect forest fires, there are two
general approaches using satellite images, and sensor networks. However, the satellites cannot
provide real-time video or images since the quality of their images is highly impacted by weather
conditions. Fire detection using wireless sensor networks is costly and high maintenance to cover
wide forest areas. Manned aircraft can precisely survey a wide area in a short amount of time,
however, this solution is costly and will endanger the life of pilots due to the high-temperature
airflow and thick smoke.

Unmanned Aerial Vehicles (UAV) have been recently utilized in wildfire detection and
management as a low-cost and agile solution to collect data/imagery considering their unique
features such as 3-dimensional movements, easy to fly, maneuverability and flexibility. The
UAV networks can offer several features in such operations including tracking the fire front line,
fast mapping of wide areas and damage assessment, real-time video streaming, and
search-and-rescue. After this, the wireless communication could give us a chance to double
check the images/videos so that the ground station could give the fastest and accurate

information to the fire fighter.

Subsystem 1 - wireless communication

Overview

For the subunit who is in charge of the wireless communication part of the project, during our
previous work, we have already designed and built the corresponding function blocks on the
transmitter side and the receiver side using the software GNU RADIO, which means we have
finished the basic goal of our project. However, due to the COVID-19, according to the
suggestion of professor Afghah and our client, we need to stay at our dormitory to finish the
remaining part, which includes the simulation of the whole transmission process. Unfortunately,
the computers of our members are installed with the Windows system, but the software needs the
Linux environment. In that case, we are now trying to install the virtual machine with the Linux
system and test our function blocks on our own computer. In my view, the challenges in future
may be the simulation of transmitting and receiving through a simulated channel. To realize the
simulation, we should build a simulated wireless channel with practical characteristics, which
means we need to consider the complex environment in practice where we process our wireless
communication functions. To ensure a better performance of the communication system, we may
also make changes to our two basic function blocks to make it more suitable to the new

environment, or to gain a higher efficiency when they work.

The transmitter side:

Options Variabl Variabl Variabl Variable Variable
1D: image_transfer_transmit | 1D: samp_rate | ID: sps 1D: excess bw | ID: psk_order | ID: freq 1D: codel 1D: code2
Generate Options: OT GUI | Value: 250k Value: 2 | Value: 350m Value: 4 Value: 2.45G | Value: 01011001...01101010001 | Value: 11011010...10011110111
Packet Encoder
File Source Samples/Symbol: 2 c'““:m"::':‘{':::;;
File: ...ubuntu/Desktop/l.jpg Bits/Symbol: 2 Casmn : !;‘ S QT GUI Constellation Sink
Repeat: No Preamble: 110110...0011110111 - Symbot: 2 Number of Points: 2.048k
Access Code: 01011...01010001 E BW: 350m Autoscale: No
QT GUI Tab Widget Pad for USRP: Yes QT GUI Frequency Sink
Num Tabs: 2 Payload Length: 11 Constellation Rect. Object FET Skze: 1.024k
Lakeat @: cfpus 15 apekc Center Frequency (Hz): 0
Label 1: byte stream QT GUI Range Symbol Map: 0, 1,2, 3 B (Mz): 250K
it nmm::;n m!r:y"f.,mj
3 t
e B °'::“: — Real Sectors: 2 Multiply Const
QT GUI Time Sink Start: 0 Imaginary Sectors: 2 Constant: 700m
of : 500 Stop: 1 Width Real Sectors: 1
Sample Rate: 250k Step: 50m Width Imaginary Sectors: 1 UHD: USRP Sink
e Device Address: ser. R24X4U1
o Samp Rate (Sps): 250k
ChO: Center Freq (Hz): 2.45G
ChO: Gain Value: 30
ChO: Antenna: TX/RX :]
ChO: Bandwidth (Hz): 250k
TSB tag name:
The receiver side:
Options
1Dz image_transfer_receive | ID: samp_rate | ID:sps | ID: excess bw | ID: nfits | ID: rrc_taps 1D: psk_order | 1D: codel 1D: freq
Generate Options: QT GU| | Value: 250k | Value: 2 | Value: 350m | Value: 32 | Value: firdes.root raised ... | Value: 4 Value: 01011001...01101010001 | Value: 2.45G

Costas Loop
Loop Bandwidth: 60m
Order: 4

UHD: USRP Source
Device Address: ser...d77a95f
Samp Rate (Sps): 250k

CMA Equalizer
Num. Taps: 15
1

ChO: Center Freq (Hz): 2.45G Gain: 47Tm QT GUI Range

ChO: Gain Value: 30 Samples per Symbol: 2 1D: phase_bw

ChO: Antenna: TX/RX Initial Phase: 16 Label: Phase: Bandwidth
Cho: Bandwidth (Hz): 250k Maximum Rate Deviation: 15 I:::D::‘“"' LS PaNaner Sink Default Value: 60m

QT GUI Frequency Sink o o2 Label: Equalizer: rate mm:

FFT Size: 1.024k QT GUI Range QT GUI Frequency Sink Default Value: 47m ¥ 10m

Center Frequency (Hz): 0 1ID: timing_loop_bw FFT Size: 1024k Start: 0 ’

Bandwidth (Hz): 250k Label: Time: BW Center Frequency (Hz): 0 Stop: 100m QT GUI Frequency Sink
QT GUI Constellation Sink mﬂuvnm: 150m | Bandwidth (Hz): 250k Step: Im !ﬂ'ﬂ:". 1.024k et
Number of Points: 2.048 o QT GUI Constellation Sink '."'“' ".-llm.'::suk i
Autoscale: No “IP‘I- 10m Number of Points: 2 048k =

Autoscale: No QT GUI Constellation Sink

QT GUI Tab Widget Number of Points: 2.048k

Num Tabs: 5

Label 0: input Autoscale: No

Label 1: timing Packet Decoder

Label 2: equalizer Access Code: 01011...01010001 Map My QPSK Demodulator
Label 3: Map:0.1.2.3 Gray Code: No

Label 4: received byte stream

QT GUI Time Sink
Number of Points: 500
Sample Rate: 250k

Autoscale: Yes

Subsystem 2 - image processing

Fire identification (Haiyu Wu)

One of the main parts of this project is to identify if there is a fire in the image/video captured by
the camera. In this part, my approach is using a neural network. Neural networks are the most
powerful tool in the image classification which is also fit in our case.

However, normally, convolutional neural networks (CNN) needs to be supported by a high
computational equipment which is impossible for us to use in an embedded device. Fortunately,
there is a lightweight network structure named mobilenet. It’s structure allowed us to embed it
into a Raspberry Pi 4 and still have a high classification accuracy.

When we tried to train the neural network, there was another challenge. To make our neural
network have high classification ability, we need to use a huge image dataset (like over 100
thousand images). However, our project is related to wildfire which is unique and special so that
it is hard to collect such a huge dataset. Therefore, we tried to use another useful tool called
transfer learning. It is pre-trained by using the IMAGENET data source, then we use our special
dataset to re-train it to improve the classification ability in our own case.

Network structure

Input operator t ¢ n| s
2244 x 3 conv2d - 32 1 | 2
1124 x 32 bottleneck | 1 16 1|1
1122 x 16 bottleneck | 6 | 24 2| 2
56 x 24 bottleneck | 6 32 3|2
282 x 32 bottleneck | 6 | 64 | 4 | 2
142 x 64 bottleneck | 6 | 96 | 3 | 1
142 x 96 bottleneck | 6 | 160 | 3 | 2
72 x 160 bottleneck | 6 | 320 | 1 | 1
72 % 320 conv2d Ix1 | - | 1280 | 1 | 1
72 x 1280 avgpool 7x7 | - - 1| -

1 x1x 1280 | conv2d 1x1 - 256 -
1 %1 x 256 conv2d 1x1 - 2 -

Table 1.
Normal image:

Number of images: 1102 with fire and 1102 without fire for training. 305 with fire and 49
without fire for testing.

Training time: 30 mins with GTX 1080ti.

Identification time: 0.025s per batch (16 images)

Resolution: 224 * 224

Accuracy: 96.4%

Thermal image:

Number of images: 998 with fire and 969 without fire for training. 224 with fire and 112
without fire for testing.

Training time: 15 mins with GTX 1080ti.

Identification time: 0.032s per batch (16 images)

Resolution: 224 * 224

Accuracy: 64.2%

Results:

1.

For the normal images, our network works well in fire identification and the speed is very
fast which could be real-time.

For the thermal images, the accuracy is really low. The main reason we figured it out is
when we take the thermal videos with a FLIR camera, it will automatically adjust the
color (shown below). The features of these two images are really close, which is hard for

Without fire Fire
Image 1.

Feature based image segmentation (Oshan)

The second part of the image processing aspect of our project was image segmentation. This
would pinpoint the location of the fire to the user on the image that is presented to him/her. We
decided to use Matlab due to it’s built-in image processing library. We decided to use Matlab
because we primarily wanted to implement the image segmentation on the ground station,
However our Matlab code can easily be adapted into Octave which will allow us to implement it
in the Raspbian OS.

I exclusively decided to use thermal images with the “Fusion” color palette (Figure 1) for image
segmentation, as the diversity of colors helped identify hotspots more effectively . I decided I
had two different approaches first by trying to use the complete RGB and the second approach
was to convert the original image to a binary image.

Original Image

Figure 1 - Sample Raw Thermal Image

Binary Image Segmentation Result

Enhanced Image

filtered image

Final Detection using Binary Image Segmentation

RGB Image Segmentation Results

100

200

300

400

500 {

600

Separation of colors

—front line

Final fire frontline detection using RGB Segmentation

There are two reasons that our team was separated into two sub-teams. One is because of the
requirements of our project. Another is that two of our teammates, Yue Zhang and Kun Xiao,
know about wireless communication. Oshan and Haiyu Wu know how to do the image
processing part. Based on our knowledge, we started working on our project. Fortunately, we

perfectly finished our clients’ requirements.

Installation of the Widget

The image processing part:
e For our simulation model:
1. Install Pytorch onto your computer
2. Load the trained model

3. Change the file name which contains the images needed to be analyzed

Run the file

For our practical model:

. Install Pytorch onto your computer

Load the trained model

Change the file name which contains the images needed to be analyzed

Run the file

Open the screen captured.py file to capture the screen which is also the image captured
by the camera

Run both files.

The wireless communication part:

For our simulation module:

. Install the GNU Radio software onto your computer

Open the simulated functional graph in the GNU Radio software

Choose what you are going to transmit and upload it onto the software

Attach the image file to the “File Source” block and start the simulated transmission
procedure

For our practical module:

. Install the GNU Radio software onto your computer

Install the USRP Driver onto your computer

3. Connect the USRP Device 1, the USRP mini, to the Raspberry Pi, download the
transmitter functional sequence into it, then connect the USRP mini to the Wildfire
Drone, use the mini hardware to transmit the collected image data

4. Connect the USRP Device 2, the USRP B210, to the computer, and load the receiver
functional sequence into the USRP, use that sequence to receive the image data, and if
needed, the user can download the image to the computer, then use the image processing

module we built to analyze it and gain the required information

Configuration and Use

For wireless Communication Part:

Options Variable Variable
1D: psk_sim 1D: samp_rate 1D: sps QT GUI Histogram Sink
Generate Options: 0T GUI Value: 32k Value: 4 Number of Points: 100

Number of Bins: 256

—={| Autoscale: ves

Accumulate: No

Min x-axis: 0
Max x-axis: 256

Random Source
Minimum: 0
Maximum: 256
Num Samples: 100
Repeat: Yes

Throttle
Sample Rate: 32k

UChar To Float | |

QT GUI Time Sink
Number of Points: 1.024k
Sample Rate: 32k
Autoscale: Yes

Constellation Modulator

Constellation: =con..n OPSK= 'I'-h e i
- Differential Encoding: Yes Sample Rate: 32k
::::'::;‘_"::;: = QT GUI Constellation Sink
= Number of Points: 1.024k
Autoscale: No

Constellation Object
1D: const QT GUI Frequency Sink
Constellation Type: OPSK FFT Size: 1.024k

Center Frequency (Hz): 0
Bandwidth (Hz): 32k

Signal Flow Graph

For Raspberry Pi 4, we mainly work with GNU Radio software. We use GNU Radio for a series

of emulation and hardware connection USRP B205 mini. To complete the transmission of the

picture. For example, we did a simulation for the signal flow graph. A random number generator
is used as input for simulation.

The source is set to repeat, creating a continuous signal that allows analysis.

The range of random number generators is set from 0 to 256. The self-output value is a byte, and
a conversion block is used to change the value from an unsigned character to a floating-point
value. This makes the generated signal corresponding to a readable oscilloscope. The signal is
also passed to a modulation block that performs phase-shift keying (phase-shift keying). There
are two signal paths, one for analyzing the input signal and one for modulating the output. Since
this is an analog, the throttle block is necessary and placed in both signal paths. Four different
outputs will analyze the input signal and the modulated signal. Use a histogram and oscilloscope
for the input signal a. For modulated signals, the constellation, as well as the spectrum

waveform, will be used. The output is displayed using a "QT GUI" processing block.

B L G G

plit

nLu ALAA“,{,JJM JLMTL“ ,AJLMAJ:L ‘LLL‘J“:‘“L—.“‘&“—

Gain (dB)

N
'

- » capture the images

|

store the images

v

analyze the images

yes
store the fire images

no

delete the images [«

All the process will do detecting, saving, analyzing automatically as long as you start them.

Maintenance

For wireless Communication Part:
USB devices are important for using the Raspberry Pi. Whether you want to connect an input
device (mouse, keyboard, monitor) or extend the computer's capabilities, many options are

available via USB.

Usually, after plugging in a device, we can use it almost immediately. But what if Raspberry Pi 4
can't detect a USB device? The first thing to do is to go to eLinux.org's Verified Peripherals list.
Search for USB devices on the page; Next, check that the device is running on another computer.
Plug it into a PC; Is it working properly? Once you've done that, it's time to ask questions about

Raspberry Pi and USB devices. On Raspberry Pi, and type in:

Sudo dmesg -c

Next, check that the device is running on another computer. Plug it into a PC; Is it working

properly? Once you've done that, it's time to ask questions about Raspberry Pi and USB devices.

On Raspberry Pi, type in:

Sudo dmesg -c

Next, insert the USB device and enter:

Dmesg

If detected, your USB device will be listed here, along with all the associated error messages. If

the device is not listed, there are usually two reasons: USB device or Pi USB bus has failed. Or

Raspberry Pi doesn't have enough power.

For image processing part:
Our model could be used in any situation as long as all the tools are installed such as numpy,
pytorch, etc. Another part needs to be mentioned is that if you would like to do some changes or

add anything, be sure to check the file name and the file path.

Trouble-shooting Operation

For wireless Communication Part:

Options Variable Variable Variable Variable
1D: ch_maodel 1D: excess bw 1D: taps 1D: samp_rate 1D: sps
Generate Options: OT GUI Value: 350m Value: 1 Value: 32k Value: 4

Random Source
Minimum: 0
Maximum: 256
Num Samples: 10k
Repeat: Yes

Samples/Symbol: 4
Excess BW: 350m

Constellation Modulator
Constellation: <con...
Differential Encoding: Yes

(m=4)=

Throttle
Sample Rate: 32k

Channel Model
Noise Voltage: 100u
Frequency Offset: 0
Epsilon: 1
Taps: 1
Seed: 0

QT GUI Range
1D: freq_offset
Label: Channel:..ency Offset
Default Value: O

QT GUI Range
1D: nolse_volt

Label: Channel: Noise Voltage

Default Value: 100u

OT GUI Range
1D: time_offset

Label: Channel: Timing Offset

Default Value: 1

Simulated transmission Channel

e

QT GUI Constellation Sink
Number of Points: 1 024k
Autoscale: No

QT GUI Time Sink
Number of Points: 200
Sample Rate: 32k

Autoscale: No

QT GUI Frequency Sink
FFT Size: 1.024k

Center Frequency (Hz): 0
Bandwidth (Hz): 32k

Constellation Rect. Object
1D: gpsk

SymbelMap: 0,1, 2,3
Constellation Points: ..1-1)
Rotational Symmetry: 4
Real Sectors: 2

Start: -100m Start: 0 i Imaginary Sectors: 2
Stop: 100m Stop: 1 Ot Width Resl Sectors: 1
Step: 1m Step: 10m Step: 100u == Splot

Width Imaginary Sectors: 1

General | Advanced | Documentation

1D |apsk
Symbol Map

Constellation Points
Rotational Symmetry
Real Sectors
Imaginary Sectors
Width Real Sectors

Width Imaginary Sectors

Soft bits precision
Constellation Rect, Object
1D: gpsk

Symbol Map: 0,1, 2, 3
Constellation Points: .. 1.1j
Rotational Symmetry: 4
Real Sectors: 2

Imaginary Sectors: 2

Width Real Sectors: 1

Width Imaginary Sectors: 1

Soft Decisions LUT

|none |

| oK || cancel | Apply

In this simulation, when we first started using the package of Constellation Rect. Object, we used
the raw date. As a result, we cannot get the result we want. Then, we changed the Constellation

Points, and we got the correct result. So, we need to focus on every data of each package.

For image processing part:
1. Check if the file exist
2. Check if the file path is correct
3. Check if any tool is missed

4. Check if the trained model is in the correct file.

Conclusion

For the image processing part, our model fits all the requirements. Mobilenet allows us to install
the model into the Raspberry Pi4, at the same time, it could keep the high accuracy. Moreover,
because it is lightweight, the speed of analyzing is fast (0.019s per image). Our model could save

the image to the specific file which could benefit the wireless communication part.

For the wireless communication part of our project, we almost finished all objectives we
previously set. First, we built two functional sequences based on the USRP transmission on the
GNU Radio software, one is supposed to be connected to the transmitter side, and the other one
is supposed to be connected to the receiver side, and they have been tested to make a successful
transmission. After the spring break, we moved to the dormitory so we began to build a
simulated sequence. After we realized the simple transmitting and receiving function, we figured
out there existed some error when doing the transmission. Thus, we analyzed the whole sequence
and added several functional blocks to improve the reliability as well as the efficiency of the
system. Finally, we finished with a functional sequence which can realize a more accurate image

transmission.

Appendices with Schematics or Journal Papers

The wireless communication system:

o The simulated module

Parameter Parameter

Options Variable | Variable | Variable Variable Variable Variable Variable | | Variable | | Variable Variable Variable || pat I o s
1D: transmit_image_sim_FEC| 1D: samp_rate| 1D: sps 1D: excess bw [1D: nfiits | 1D: rrc_taps _ 1D: psk_order | | 1D: taps 1D: codel | | ID: codez | | 1D: polys 1D k e Rl
Generate Options: OT GUI | Valwe: 32k | Value: 4 | Value: 350m | Value: 32 | Value: firdes.root_raised Value: 4 Value: 1 Value: 1 Value: 1 Vaiue: 109, 76 | | Value: 7

= = Type: String | | Value: 32
Packet Encoder = | Type: nt

=
Constellation: <con... (m=4)>
Differential Encoding: Yes
Samples/Symbol: 2

Excess BW: 350m

Samples/Symbol: 2
Bits/Symbol: 2
Preambie: codel
Access Code: code?
Pad for USRP: Yes
Payload Length: 80

FEC Extended Encoder
Encoder Objects: <gn..030> >
Threading Type: None

Puncture Pattern: 11

File Source
File: ._x&/Desktop/fire.jpeg
Repeat: No

Unpack K Bits
K:8

Clock Sync
Samples/Symbol: 4
Loop Bandwidth: 62.8m

Channel Model

Nolse Voltage: 100u "My QPSK Demodulator

Costas Loop

Frequency Offset: 0
Epsilon: 1
Taps: 1

Taps: rrc_taps
Filter Size: 32
Initial Phase: 16

Map
Map: 0, 1,23

Samples per Symbol: 2

Leop Bandwidth: 62 8m

Gray Code: Yes

Repack Bits

Bits per input byte: 2
Bits per output byte: B

Packed to Unpacked
Bits per Chunk: 1
Endianness: MSE

€CSDS Encoder Definition
1D: enc_ccsds

Streaming Behavior: Tailbiting

Scale: 1

Char To Float

Threading Type:

FEC Extended Decoder
Decoder Objects: <gn...c60= >

Nane
Puncture Pattern: 11

None

Repack Bits
Bits per input byte: 1
Bits per output byte: 8

€C Decoder Definition
1D: dec_cc

Parallelism;: 0

Frame Bits: 256

Constraint Length (K): 7
Rate Inverse (1/R) (1/2) —> 2: 2
Polynomials: 79, 109

Start State: 0

End State: -1

Tallbiting

Sink

File: ome/kxBifire.|peg

Unbuffere

Append file: Overwrite

Byte Padding: No

QT GUI Range
1D: noise_volt
Label: Nolse Voltage
Default Value: 100u
start: 0
Stop: 1
Step: 10m

QT GUI Range

QT GUI Range
1D: time _offset
Label: Timing offset
Default Value: 1

Start: -100m Start: 999m
Stop: 100m Stop: 1.001
Step: 1m Step: 100u

QT GUI Rang
Label: Time: BW
Start: 0

Stap: 200m
Step: 10m

1D: timing_loop_bw

Default Value: 62.8m

- QT GUI Range QT GUI Range
1D: eq_gain 1D: phase_bw
Labek: Label:
Default Value: 10m Default Value: 62.8m
Start: 0 Start: 0
Stop: 100m Stop: 1
Step: 1m Step: 10m

QT GUI Tab Widget

Num Tabs: 5
Label 0: channel
Label 1: timing
Label 2: equalizer

Label 3: frequency correction

Label 4: output

< Rect. Object
1D: gpsk

Symbol Map: 0. 1.2, 3
Constellation Points: ..00uj
Rotational Symmetry: 4
Real Sectors: 2

Imaginary Sectors: 2

Width Real Sectors: 1
Width Imaginary Sectors: 1

the whole simulated functional sequence

e The practical module

1.

the transmitter side :

Repeat: No

QT GUI Tab Widget

Preamble: 110110...0011110111
Access Code: 01011...01010001
Pad for USRP: Yes

Ha g |

Differential Encoding: Yes
Samples/Symbol: 2
Excess BW: 350m

Options Variable Variable Variable Variable Variable Variable Variable
ID: image_transfer_transmit | ID: samp_rate | ID: sps ID: excess bw | ID: psk_order | ID: freq 1D: codel 1D: code2
Generate Options: QT GUI | Value: 250k Value: 2 | Value: 350m Value: 4 Value: 2.45G | Value: 01011001...01101010001 | Value: 11011010...10011110111
Packet Encoder = o
File Source Samples/Symbol: 2 =
File: ...ubuntu/Desktop/1.jpg Bits/Symbol: 2 e e QT GUI Constellation Sink

Number of Points: 2.048k
Autoscale: No

QT GUI Frequency Sink

Num Tabs: 2 Payload Le : 11 Constellation Rect. Object
Label 0: cutput _ __ 1D: apsk ’ FFT Size: 1.024k
Label 1: byte stream Symbol Map: 0, 1,2, 3 Center Frequency (Hz): 0
QT GUI Range e Bandwidth (Hz): 250k
1D: multi Constellation Points: ...07m|
Label: gain Rotational Symmetry: 4
Default Value: 700m Real Sectors: 2 Multiply Const
Imaginary Sectors: 2 Constant: 700m
QT GUI Time Sink Start: 0
Number of Points: 500 Stop: 1 Width Real Sectors: 1
Sample Rate: 250k Step: 50m Width Imaginary Sectors: 1 UHD: USRP Sink
Autoscale: Yes Device Address: ser. R24X4U1
Samp Rate (Sps): 250k
ChO: Center Freq (Hz): 2.45G
ChO: Gain Value: 30
ChO: Antenna: TX/RX :l
ChO: Bandwidth (Hz): 250k
TSB tag name:
2. the receiver side :
Options
1D: image transfer_receive | ID: samp_rate | ID:sps | 1Dz excess bw | ID: nfits | ID: rrc_taps 1D: psk_order | 1Dz codel 1D: freq
Generate Options: QT GUI | Value: 250k | Value:2 | Value: 350m | Value: 32 | Value: fides.root raised ... | Value:4 | Value: 01011001..01101010001 | Value: 2.45G

UHD: USRP Source
Device Address: ser..d77a95f
Samp Rate (Sps): 250k
[[| cno: center Freq (Ha): 2.456
ChO: Gain Value: 30
Cho: Antenna: TX/RX
ChO: Bandwidth (Hz): 250k

QT GUI Frequency Sink

QT GUI Constellation Sink
Number of Points: 2 048k
Autoscale: No

QT GUI Tab Widget
Num Tabs: 5
Label 0: input
Label 1: timing
Label 2: equalizer
Label 3: frequency corection
Label 4: received byte stream

Polyphase Clock Sync

Samples/Symbol: 2

Loop Bandwidth: 150m

Taps: rc_taps

Filter Size: 32

Initial Phase: 16

Maximum Rate Deviation: 15

CMA Equalizer
Num. Taps: 15
1

Y

No

UChar To Float

a

Output SPS: 2
QT GUI Range QT GUI Frequency Sink
1D: timing_loop_bw FFT Size: 1024k
Label: Time: BW Center Frequency (Hz): 0
Default Value: 150m | Bandwidth (Hz): 250k

- QT GUI Constellation
: - o Number of Points: 2.048k

Packet Decoder
Access Code: 01011...01010001

QT GUI Time Sink

Autoscale: Yes

e Some of the results (testing part)

File Sink
Number of Points: 500
o~ Rate: 250k File: ...ubuntu/Desktop/d.jpg
Unbuffered: On

Append file: Overwrite

The transmitter result before the improvements:

Gain: 47m
Samples per Symbol: 2

Costas Loop
Loop Bandwidth: 60m
Order: 4

QT GUI Range
1D: phase_bw

Label: Phase: Bandwidth

QT GUI Range | QT GUI Frequency Sink
1D: eq_gain FFT Size: 1.024k rr:';v""': B
Label: Equalizer: rate | Center Frequency (Hz): 0 Stop: 1
Default Value: 47m | Bandwidth (Hz): 250k Step: 10m
Start: 0
Stop: 100m QT GUI Frequency Sink
Step: 1m FFT Size: 1.024k

Center Frequency (Hz): 0
Bandwidth (Hz): 250k
QT GUI Constellation Sink
Number of Points: 2 048k

Autoscale: No

Map
Map:0.1.2.3

My QPSK Demodulator
Gray Code: No

Previous » Next @ S €

~ - g . - —_—l
DU A O A A VAN

P B2 4d S0 SN LM

The transmitter result after the improvements:

{ PpPrevious Y

